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Abstract
Multimodal Foundation Models (MMFMs) have shown remarkable performance on various computer

vision and natural language processing tasks. However, their performance on particular tasks such as
document understanding is still limited. They also require more compute, time, and engineering resources
to finetune and deploy compared to traditional, unimodal models. In this report, we present Multimodal
Structured Generation, a general framework which constrains the output logits of frozen MMFMs to force
them to reason before responding with structured outputs that downstream APIs can parse and use. We
provide a detailed account of our approach, including the technical details, theoretical discussions, and
final evaluation results in the 2nd Multimodal Foundation Models Challenge hosted by the Computer
Vision and Pattern Recognition (CVPR) conference. Our approach achieved the second highest score in
the hidden test set for Phase 2 and third highest overall. This shows the method’s ability to generalize
to unseen tasks. And that simple engineering can beat expensive & complicated modelling steps as we
first discussed in our paper, Retrieval Augmented Structured Generation: Business Document Information
Extraction as Tool Use.1

1 Introduction

Multimodal Foundation Models (MMFMs) have been made possible by recent advances on grafting together
parts from different foundation models pretrained on specific modalities [1]. The resulting "Frankenstein"
models show remarkable results in diverse & multimodal tasks. However, their performance on document
understanding is still lacking.

In this report, we present Multimodal Structured Generation, a general framework for controlling the output
format of multimodal models. In this challenge, in particular, we use it to force frozen multimodal models to
reason before responding with a structured output that downstream APIs can parse and use.

Our team actually only learned about the challenge roughly two days before the submissions deadline–the
first 24 hours of which was wasted working with a commercially-available model which, after clarifying with
the organizers, we were not allowed to use for the challenge. We neither had the time, compute resources,
nor the budget to implement complicated modelling steps. Fortunately, we have already shown in our previous
work on Retrieval Augmented Structured Generation (RASG) that simple engineering could supplant more
complicated modelling steps–at least on document information extraction tasks [2]. RASG has four compo-
nents: (1) Structured Generation [3] (2) Retrieval Augmented Generation [4], (3) Supervised Finetuning, &
(4) Structured Prompting [5]. But for this challenge, we only managed to implement Structured Generation
but with multimodal models instead of just an LLM as in our previous work.

Our team placed 2nd in Phase 2 of CVPR’s 2nd MMFM Challenge and 3rd in the overall rankings–
beating multiple teams that have finetuned their own multimodal models. Phase 2 contains never-before-seen
evaluation datasets. This shows the generality of the approach to unseen tasks. And it being finetuning-free
makes it easy and cheap for other teams to replicate. All of our scripts and evaluation results can be accessed
in https://github.com/leloykun/MMFM-Challenge.

2 Methodology

2.1 Multimodal Structured Generation
Outputs from generative models are not guaranteed to be parseable by downstream programs, compilers,
and/or APIs. For example, if a human user asks an LLM to generate a Python script for sorting a list of

1All of our scripts, deployment steps, and evaluation results can be accessed in https://github.com/leloykun/
MMFM-Challenge
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Figure 1: Multimodal Structured Generation

numbers, the LLM’s output may seem runnable but in fact produce errors when ran on an IDE. There is a
spectrum of approaches that guarantee the generative models’ outputs can indeed be usable by downstream
systems. On one end are what we call "soft" constraints which simply ask or instruct the models to follow a
specified schema and retry until they succeed [6]. On the other end are "hard" constraints which zero-out the
logits of invalid tokens altogether [3].

Structured Generation can then easily be applied to generative Multimodal Models as the latter also
produce logits which we can then zero-out if they correspond to invalid tokens. See Figure 1.

2.2 Implementation Details
We used Huggingface’s Inference Endpoints API to deploy the multimodal models and Huggingface’s Text
Generation Interface (TGI) API to call inference requests on the models [7] [8].

For Phase 1, since the test dataset is already publicly-available, we decided not to focus on it as the
results would not show the generality of our approach. Thus, we only used an unaugmented Llava v1.5 for
Phase 1 [9]. For Phase 2, we used Llava-Next (v1.6) augmented with Structured Generation to generate
the results for the mychart and myinfographic datasets [10] [11]. But to maximize results, we used a
version of Nous Hermes 2 Pro - Mistral 7B model augmented with Structured Generation for the mydoc
dataset [12]. We finetuned this version of Hermes 2 Pro on the DocILE dataset [13] not in this chal-
lenge, but in our previous work [2]. This model can be downloaded from https://huggingface.co/leloy/
Nous-Hermes-2-Pro-Docile-RASG-1ShotRetrieval-StructuredPrompt.

We used Structured Generation to force the multimodal models to reason before answering. We used
slightly different json output formats for each of the evaluation datasets (which can be seen in our repository),
but they generally follow the following template:

{
"name" : "<t o o l ␣name␣e . g . ␣ i n f o g r a p h i c_e x p l a i r_ t o o l >" ,
" d e s c r i p t i o n " : "<t o o l ␣ d e s c r i p t i o n ␣e . g . ␣ I n f o g r a p h i c ␣ E x p l a i n e r ␣Tool>" ,
" pa ramete r s " : {

" type " : " o b j e c t " ,
" p r o p e r t i e s " : {

"1_reason ing " : {" type " : " s t r i n g " } ,
"2_answer" : {

" type " : " s t r i n g " ,
" d e s c r i p t i o n " : " Conc i s e ␣ answer ␣ to ␣ the ␣ u s e r ␣ qu e s t i o n . "

} ,
} ,
" r e q u i r e d " : [ "1_reason ing " , "2_answer" ] ,

} ,
}

For mydoc, we used the entity being requested as the "key" following the json format we used in our
previous work [2]. This makes it easy to request for multiple entities in the document (e.g. requesting for the
Billing Name and Total Amount at the same time).

{
"name" : " doc_ex t r ac t i on_too l " ,
" d e s c r i p t i o n " : " Ex t r a c t ␣ i n f o rma t i o n ␣ from␣a␣document" ,
" pa ramete r s " : {

2

https://huggingface.co/leloy/Nous-Hermes-2-Pro-Docile-RASG-1ShotRetrieval-StructuredPrompt
https://huggingface.co/leloy/Nous-Hermes-2-Pro-Docile-RASG-1ShotRetrieval-StructuredPrompt


" type " : " o b j e c t " ,
" p r o p e r t i e s " : {

"1_reason ing " : {" type " : " s t r i n g " } ,
f "2_{key }" : {

" type " : " i n t e g e r " i f key == "page" e l s e " s t r i n g " ,
" d e s c r i p t i o n " : "The␣answer , ␣ e x a c t l y ␣ as ␣ i t ␣ appea r s ␣ i n ␣ the ␣document . " ,
"maxLength" : max_length ,

}
} ,
" r e q u i r e d " : [ "1_reason ing " , f "2_{key }" ] ,

} ,
}

Note that we prepended indices to the keys in the json format. That is because the version of TGI we
used still uses an older version of Outlines (version < 0.40.0) which implicitly reorders the keys by alphabetical
order. Prepending the indices solves this issue. But they can be removed on later versions of TGI and Outlines.

Also note that we asked the models to output the exact answers for mydoc while we only asked the models
to be concise for mychart and myinfographic. This is because we suspect that the challenge organizers used
the MMMU evaluation metric for mydoc and Mistral 7B to judge the outputs for mychart and myinfographic
[14] [15]. The former requires exact outputs while implementation details on the evaluation script for the latter
indicate that concise answers would be better. Although, these claims are unconfirmed.

2.3 Datasets
The MMFM challenge provided the following datasets for Phase 1: IconQA [16], FUNSD [17], WildReceipt
[18], TextbookQA [19], TabFact [20], DocVQA [21], InfographicVQA [22], WebSRC [23], and WTQ [24].

3 Results

We evaluated our approach on the two phases of CVPR’s 2nd MMFM’s Challenge.

Table 1: Evaluation results on CVPR’s 2nd MMFM Challenge
Phase Eval Dataset Acc

1 iconqa_fill 15.5%
funsd 32.5%

iconqa_choose 31.0%
wildreceipt 35.5%
textbookqa 51.5%
tabfact 48.5%
docvqa 20.5%

infographicvqa 23%
websrc 28.5%
wtq 8.5%

Phase 1 Overall 29.5%

2 mydoc 62.25%
mychart 4.5%

myinfographic 60.98%
Phase 2 Overall 50.49%

Our approach placed 2nd in the hidden test set of Phase 2 and 3rd place overall.

4 Discussion

Interestingly, we managed to beat multiple teams who finetuned multimodal (vision + text) models using just
an LLM and & structured generation on the Key-Information Extraction dataset, mydoc. This supports one
finding in our paper that visual information isn’t really important for KIE–and in this particular case, using
vision encoders was even harmful [2].

We have four hypotheses on why:
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Table 2: Ablation Benchmarks of RASG components on KIE & LIR tasks on the DocILE dataset
Model Key-Information Extraction Line Items Recognition

F1 Score GLIRM-F1 [2]

GPT-3.5 34.17% 28.31%
+ 1-Shot Retrieval + 22.08% + 20.67%
+ Supervised Finetuning + 22.31% + 17.73%
+ Structured Prompting + 4.96% + 19.42%

Hermes 2 Pro - Mistral 7B 13.55% 4.69%
+ 1-Shot Retrieval + 36.87% + 40.55%
+ Supervised Finetuning + 17.71% + 13.53%
+ Structured Prompting + 0.63% + 10.30%

* Benchmarks results ablating three components of Retrieval Augmented Structured Gener-
ation on Key-Information Extraction (KIE) & Line Items Recognition (LIR) tasks on the
DocILE dataset [13]: (1) Retrieval Augmented Generation [4], (2) Supervised Finetuning,
& (3) Structured Prompting [5]. Structured Generation was not included in the ablation
benchmarks as it is a necessary component of RASG to ensure that the outputs are parse-
able by downstream APIs [3]. Results show that adding Structured Prompting, i.e. infusing
layout information to the text prompt, only adds a marginal increase in performance.

• First, perhaps the visual and layout information are not important for Key-Information Extraction.

The team behind DocLLM had this idea of removing the vision component and treating the layout
information as its own modality. And their Text + Layout only model worked just as well or even better
than the Text + Vision and Text + Vision + Layout models they benchmarked [25]. Our previous work,
on the other hand, completely gets rid of the other modalities and replaces them with other augmen-
tations (i.e. retrieval augmented generation, structured generation, infusing the layout information to
the prompt, & finetuning) instead [2]. There, we found that infusing the layout information to the text
prompt does not actually help for the KIE task either. See Table 2.

We also do not expect randomly permuting the order of the words in the text prompt would help either.
So perhaps what is actually important for the KIE task is locality. That is, that nearby words in the
image has to be nearby in the text prompt. But this is already guaranteed by good OCRs.

• Second, perhaps the LLMs can already infer the location of the words in the image from the
position (index) of the words in the text prompts.

Previous work show that LLMs trained without positional encodings can still learn position information
[26]. The possible reason is that they infer this from the (implicit) causal graph. Perhaps this is also
true in the 2D case. That is, we do not need to feed information on where the input words are because
the LLMs can already infer this from the order of the words as they are fed to the LLM.

• Third, perhaps it has to do with the information capacity of these models.

The base LLM of the LLaVA-NeXT (v1.6) model we tested is Mistral-7B [10]. And from a quick napkin
math with the neural scaling laws, this indicates that the language model can only hold around 7*20 =
140B tokens of information [27]. This is not a lot. And then we further pushed it to overcapacity by
jamming in the embeddings from the visual encoder and projector.

• Fourth, which we find most compelling, is that we are simply not using enough image tokens for
document information understanding.

Unlike pictures of pets (which only require a couple of tokens to describe), document images are packed
with information. And from empirical observations, business documents usually have around 3, 000 text
tokens. And we would have more tokens if we also consider the layout information. And yet, we usually
pack them to image encoders that compresses the document to just ≤ 1024 tokens. That’s a lot of
information lost.

Previous work which aims to reduce the number of image tokens shows empirical evidence for these
claims [28]. In the table in Figure 2, see that more image tokens are required to achieve maximum
performance on document understanding datasets.
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Figure 2: Comparison of approaches with the SS baseline and Matryoshka Multimodal Models (M3) across
various benchmarks under LLaVA-NeXT [28]. Here # Tokens denotes the number of visual tokens per image
grid in LLaVA-NeXT. SS denotes the baseline model trained with a Specific Scale of visual tokens. M3 is at
least as good as SS, while performing better on tasks such as TextVQA, ChartQA, and MMBench. Oracle
denotes the case where the best tradeoff between visual tokens and performance is picked.

5 Conclusion

Our results and final standings in CVPR’s 2nd MMFM Challenge show our approach’s ability to generalize to
unseen tasks. While our implementation for this challenge is finetuning-free (which also makes it easy and
cheap to implement for other teams), we could also apply it on finetuned models. However, as we noted in our
previous work, naively combining finetuning and Structured Generation can lead to worse results [2]. Future
work on the topic is necessary. But for now, ensuring that the alignment of output formats in the finetuning
dataset and in the inference requests helps.

Our results on the mydoc dataset also reinforce our claim that neither the visual nor precise layout infor-
mation is necessary for solving key-information extraction. Although more work is required to verify the four
hypotheses we raised in the discussion section above.
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